
tweaking octopress
Peter Humburg

Published at Genomic Campfire on Feb 13 2015

Contents

Descriptions and keywords 2

Rename posts on publication 2

Adding a category list 3

Better category pages 3

Gravatar support 5

Tell the world! 6

Conclusion 7

1



This is the second post an a short series describing my experience with setting up Octopress for this blog. The
first post, dealing with installation and basic customisation, can be found here.

Once I started writing posts for the blog I noticed a few things that I thought could use some tweaking. This
post documents several changes that can be achieved without too much work. I have also made one or two
larger changes that probably warrant their own posts.

Descriptions and keywords

Octopress can add description and keywords meta tags to the header of generated pages, but support is somewhat
half-hearted in the default theme1. If you want this, you’ll have to add description and keywords fields to every
post. To simplify this process I modified the new_post rake task. The Rakefile in the root directory of the
Octopress installation contains all the rake tasks for Octopress. The task for generating new posts contains the
following code to produce the YAML header:

open(filename, 'w') do |post|
post.puts "---"
post.puts "layout: post"
post.puts "title: \"#{title.gsub(/&/,'&amp;')}\""
post.puts "date: #{Time.now.strftime('%Y-%m-%d %H:%M:%S %z')}"
post.puts "comments: true"
post.puts "categories: "
post.puts "---"

end

Simply add

post.puts "description: "
post.puts "keywords: "

after the categories entry. The foxslide theme adds all of this, except the site wide keywords, to the generated
pages. If you use the default theme (or another theme that has less support for this) you may need to make
some changes to source/_includes/head.html. There are instructions on how to do this at the sweatmeat
blog. I only added a short piece of code to get keywords from _config.yml added to the blog’s index page.
This goes somewhere close to line that adds page.keywords.

{% if index %}
{% if site.keywords %}<meta name="keywords" content="{{ site.keywords}}">{% endif %}

{% endif %}

Rename posts on publication

Next, I wanted the posts generated by the new_post rake task to be marked as drafts so that they don’t get
published prematurely. For that we go back to the code that generates the meta data block and add published:
false to the output.

One more thing that seems helpful is to automatically adjust file names for posts when they are published to
include the current date2. This isn’t strictly necessary because the date inside the meta data block overrides
the date in the file name anyway, but it makes sense to keep things consistent. Following the description on
ewal.net I added the following rake task to the Octopress Rakefile.

desc "Rename files in the posts directory if the filename does not match the post date in the YAML front matter"
task :rename_posts do
Dir.chdir("#{source_dir}/#{posts_dir}") do
Dir['*.markdown'].each do |post|

1The foxslide theme I use has improved support for these, making my life a bit easier.
2thanks to Ewal.net for the idea

2

http://humburg.github.io/blog/2015/01/25/getting-started-with-octopress/
http://sweetme.at/2013/08/06/how-to-set-your-octopress-description-and-keyword-meta-tags/
http://sweetme.at/2013/08/06/how-to-set-your-octopress-description-and-keyword-meta-tags/
https://www.ewal.net/2012/09/08/octopress-customizations/
https://www.ewal.net/2012/09/08/octopress-customizations/


post_date = ""
File.open( post ) do |f|
f.grep( /^date: / ) do |line|
post_date = line.gsub(/date: /, "").gsub(/\s.*$/, "")
break

end
end
# Get the post title from the currently processed post
post_title = post.to_s.gsub(/\d{4}-\d{2}-\d{2}/, "")
# determine the correct filename
new_post_name = post_date + post_title
is_draft = false
File.open( post ) do |f|

f.grep( /^published: false/ ) do |line|
is_draft = true
break

end
end
if !is_draft && post != new_post_name

puts "renaming #{post} to #{new_post_name}"
FileUtils.mv(post, new_post_name)

end
end

end
end

Now running rake rename_posts will check all published posts and adjust their file name if it is inconsistent
with the date listed in the YAML block. If you want you can add this to the list of tasks executed by rake
gen_deploy to further automate the process.

Adding a category list

I expect to publish posts in a number of categories and it would be nice to have links to the category index
pages. That will hopefully help readers to find the posts they are interested in. I’m using the category list
plugin by alswl. The category_list.rb script can generate plain lists as well as tag clouds. I opted for a
simple list in the footer of the page (next to the recent post list). When using the default theme you should
add one of the custom asides that come with the plugin to the default_asides list in _config.yml. With the
foxslide theme I actually had to modify source/source/_includes/custom/footer_widgets.html, adding

<div class="span3">
<h2>categories</h2>
<ul id="category-list">{% category_list counter:true %}</ul>

</div>

in an appropriate place.

Better category pages

The default category pages generated by Octopress, located at /blog/categories/(category) are rather bland. It
would be much nicer if they looked more like the front page with previews of the posts and pagination. One
approach to achieve this has been described by Prateek Gianchandani. This basically involves creating a copy
of the index page, restricting the listing of posts to a single category and copying it to a directory with the same
name. The result of this is that much nicer category pages are available at /(category). I started with the same
process but made some adjustments to suit my needs.
Most importantly, I don’t want to be forced to create category pages manually whenever I use a new category
for the first time. The first step in automating this is to create a template that will form the basis of all category
pages (in source/_templates/category.html).

3

https://github.com/alswl/octopress-category-list
http://highaltitudehacks.com/2013/06/30/octopress-category-pages-with-preview-and-pagination/


<div id="category-wrapper">
<div class="container">

<div class="row" id="post-container">
{% assign index = true %}
{% for post in site.categories._CATEGORY_ %}
{% assign content = post.content %}

<article class="span4">
{% include article.html %}

</article>
{% endfor %}
</div>

<div class="row">
<ul class="pager">
{% if paginator.next_page %}

<li class="previous">
<a href="{{paginator.next_page}}">&larr; Older</a>

</li>
{% endif %}
{% if paginator.previous_page %}

<li class="next">
<a class="next" href="{{paginator.previous_page}}">Newer &rarr;</a>

</li>
{% endif %}

</ul>
</div>

</div>
</div>

To create a new category page from this template it is copied to source/categories/<category>/index.html
together with an appropriate meta data block. All this is accomplished by a new rake task I defined:

desc "Create a new category page in #{source_dir}/categories/(filename)/index.html"
task :new_category, [:filename, :force] do |t, args|
raise "### You haven't set anything up yet. First run `rake install` to set up an Octopress theme." unless File.directory?(source_dir)
args.with_defaults(:force => false)
category = args.filename
page_dir = [source_dir, "categories", category]
title = "Category: #{category}"
filename = "index"
extension = "html"
page_dir = page_dir.map! { |d| d = d.to_url }.join('/') # Sanitize path
mkdir_p page_dir
file = "#{page_dir}/#{filename}.#{extension}"
if !args.force and File.exist?(file)
abort("rake aborted!") if ask("#{file} already exists. Do you want to overwrite?", ['y', 'n']) == 'n'

end
puts "Creating category page: #{file}"
open(file, 'w') do |page|
page.puts "---"
page.puts "layout: category"
page.puts "title: \"#{title}\""
page.puts "sharing: false"
page.puts "footer: true"
page.puts "category: #{category}"
page.puts "---"
open("source/_templates/category.html", "r+") do |template|

template.each_line do |line|
line = line.gsub! "_CATEGORY_", "#{category}" if line =~ /_CATEGORY_/
page.puts line

end

4



end
end

end

This reduces the manual intervention required when a new category is introduced to calling an additional
rake task. That is better than having to mess with files directly but I really would prefer if this happened
automatically. Here is another task to facilitate that.

desc "Create index pages for all categories."
task :categories, :force do |t, args|
raise "### You haven't set anything up yet. First run `rake install` to set up an Octopress theme." unless File.directory?(source_dir)
raise "### No categories found. Try running 'rake generate' first." unless File.directory?("#{public_dir}/blog/categories")
args.with_defaults(:force => true)
categories = Dir["#{public_dir}/blog/categories/*/"].map { |d| File.basename(d) }
categories.each do |cat|
Rake::Task[:new_category].invoke("#{cat}", args.force)
Rake::Task[:new_category].reenable

end
end

This task inspects the category pages generated by Octopress to obtain a list of all categories and then creates
custom category pages as described above. This can be added to the list of tasks executed by gen_deploy to
ensure that category pages are up to date.

To ensure that readers of the blog get to see the improved index pages for each category I modified the category
list plugin such that it generates links to the new pages. All that is left to do now is to style the new index
pages. I’m using a custom layout based on the standard page layout. The only differences are that I changed
the width of the content area and removed comments.

7c7
< <article class="span8 offset2 article-format" role="article">
---
> <article class="span12 article-format" role="category">
26,31d25
< {% if site.disqus_short_name and page.comments == true %}
< <section>
< <h1>Comments</h1>
< <div id="disqus_thread" aria-live="polite">{% include post/disqus_thread.html %}</div>
< </section>
< {% endif %}

Gravatar support

You may want to add your Gravatar image to your blog, either on the ‘about’ page or as part of an ‘about’
aside. Joe Nicosia has a plugin for that purpose on GitHub. Using that plugin I added the following code
to sources/_includes/custom/asides/about.html to add my Gravatar to the ‘about’ aside of the foxslide
theme.

{% if site.gravatar_email %}
<span id=gravatar>

<img src="{% gravatar_image %}" alt="Gravatar of {{ site.author}} " title="Gravatar of {{ site.author }}" />
</span>
{% endif %}

The only other things that are needed are a gravatar_email entry in _config.yml and a bit of CSS in
sass/custom/_styles.scss. I chose to display a circular version of the Gravatar as a small inset at the
start of the ‘about’ text.

5

https://github.com/joet3ch/gravatar-octopress


#gravatar img {
border-radius: 50%;
float: left;
margin-right: 10px;
margin-top: 50px;
margin-bottom: 0px;

}

Tell the world!

Now that the blog is up and running it is time to spread the word. Apart from announcing the existence of the
blog through social media we can notify various search engines. Quite a few blog related ones can be reached
through Ping-O-Matic. Since this needs to be repeated after each new post is published it is a good idea to
automate the process with a rake task. The following code (again thanks to Ewal.net) accomplishes this..

desc 'Ping pingomatic'
task :pingomatic do

begin
require 'xmlrpc/client'
puts '* Pinging ping-o-matic'
XMLRPC::Client.new('rpc.pingomatic.com', '/').call('weblogUpdates.extendedPing', 'Genomic Campfire' , 'http://humburg.github.io', 'http://humburg.github.io/atom.xml')

rescue LoadError
puts '! Could not ping ping-o-matic, because XMLRPC::Client could not be found.'

end
end

Of course you’ll have to customise this with your own blog’s details. This doesn’t include Google or Bing. To
reach those as well we use two more rake tasks that send a notification about the updated site map.

desc 'Notify Google of the new sitemap'
task :sitemapgoogle do

begin
require 'net/http'
require 'uri'
puts '* Pinging Google about our sitemap'
Net::HTTP.get('www.google.com', '/webmasters/tools/ping?sitemap=' + URI.escape('http://humburg.github.io/sitemap.xml'))

rescue LoadError
puts '! Could not ping Google about our sitemap, because Net::HTTP or URI could not be found.'

end
end

desc 'Notify Bing of the new sitemap'
task :sitemapbing do

begin
require 'net/http'
require 'uri'
puts '* Pinging Bing about our sitemap'
Net::HTTP.get('www.bing.com', '/webmaster/ping.aspx?siteMap=' + URI.escape('http://humburg.github.io/sitemap.xml'))

rescue LoadError
puts '! Could not ping Bing about our sitemap, because Net::HTTP or URI could not be found.'

end
end

Finally, we combine all three of these into a single task.

desc "Notify various services about new content"
task :notify => [:pingomatic, :sitemapgoogle, :sitemapbing] do
end

6

https://www.ewal.net/2012/09/08/octopress-customizations/


Conclusion

With the modifications described in this and the previous post in place the blog largely functions the way I
want it to. In addition to the modifications described here I also switched the Markdown engine to pandoc.
A separate post about this is in the pipeline. I’m also working on improvements to the GitHub plugin, i.e. a
better list of GitHub repositories to display as an aside.

With all this in mind, how do I feel about my experience with Octopress so far? Getting a blog with the default
theme up and running was pretty straightforward. The support for custom themes is good, but of course the
quality of individual themes varies. How much work is required to get all the details sorted depends a lot on
how well the theme fits your requirements and how particular you are about getting everything to work just so.
I enjoy tweaking all the details until they are just right but have limited time available to do this sort of thing.
Overall Octopress provided a fairly good balance of things just working and the ability to change the details. I
even learned some Ruby in the process.

7

http://humburg.github.io/blog/2015/01/25/getting-started-with-octopress/
http://johnmacfarlane.net/pandoc/

	Descriptions and keywords
	Rename posts on publication
	Adding a category list
	Better category pages
	Gravatar support
	Tell the world!
	Conclusion

